Windows 

Рлс с синтезированной апертурой. Возможности современных рлс с синтезированием апертуры антенны. Анализ технического задания

  • 5.ОПТИЧЕСКИЕ СИСТЕМЫ, ВЫПОЛНЯЮЩИЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ
  • 6.СВОЙСТВА ОПТИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ
  • 6.1.ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРЫ ВИНЕРА НЕКОТОРЫХ ФУНКЦИЙ
  • 8.ИНТЕРФЕРЕНЦИЯ СВЕТОВЫХ ПУЧКОВ. ПОНЯТИЕ ПРОСТРАНСТВЕННОЙ И ВРЕМЕННОЙ КОГЕРЕНТНОСТИ
  • 10.ФИЗИЧЕСКИЕ ПРИНЦИПЫ ГОЛОГРАФИИ
  • 10.1.ОСНОВНЫЕ ТИПЫ ГОЛОГРАММ
  • 10.2.ГОЛОГРАММЫ ФРАУНГОФЕРА, ФРЕНЕЛЯ И ФУРЬЕ
  • 10.3. АССОЦИАТИВНЫЕ СВОЙСТВА ГОЛОГРАММ
  • 11.ОБОБЩЕННАЯ ФУНКЦИОНАЛЬНАЯ СХЕМА ОБРАБОТКИ ОПТИЧЕСКИХ СИГНАЛОВ
  • 12.КОГЕРЕНТНЫЕ ОПТИЧЕСКИЕ СИСТЕМЫ АНАЛОГОВОЙ ОБРАБОТКИ ИНФОРМАЦИИ
  • 12.1.Когерентный аналоговый оптический процессор
  • 13.СИНТЕЗ ПРОСТРАНСТВЕННЫХ ОПЕРАЦИОННЫХ ФИЛЬТРОВ
  • 14.КОГЕРЕНТНАЯ ОПТИЧЕСКАЯ ОБРАБОТКА СИГНАЛОВ С ИСПОЛЬЗОВАНИЕМ ОБРАТНОЙ СВЯЗИ
  • 15.ОПТОЭЛЕКТРОННАЯ ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА
  • 16.РАБОТА АКУСТООПТИЧЕСКОГО АНАЛИЗАТОРА СПЕКТРА РАДИОСИГНАЛОВ
  • 17.РАДИОЛОКАЦИОННЫЕ СТАНЦИИ С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕНЫ (РСА)
  • 18.ДИСКРЕТНОЕ И АНАЛОГОВОЕ УПРАВЛЕНИЕ ПЛОСКОСТЬЮ ПОЛЯРИЗАЦИИ СВЕТОВОГО ПУЧКА
  • 18.1.ПОЛЯРИЗАЦИОННАЯ МОДУЛЯЦИЯ НА БАЗЕ ДВУЛУЧЕПРЕЛОМЛЕНИЯ СВЕТОВОГО ПУЧКА
  • 18.2.ДИСКРЕТНОЕ ПЕРЕКЛЮЧЕНИЕ УГЛОВ НАКЛОНА ПРОИЗВОЛЬНО ОРИЕНТИРОВАННЫХ ПЛОСКОСТЕЙ ПОЛЯРИЗАЦИИ СВЕТОВОГО ИЗЛУЧЕНИЯ
  • 18.3.АНАЛОГОВОЕ УПРАВЛЕНИЕ ПРОИЗВОЛЬНО ОРИЕНТИРОВАННОЙ ПЛОСКОСТЬЮ ПОЛЯРИЗАЦИИ СВЕТОВОГО ПУЧКА
  • 19.ДИСКРЕТИЗАЦИЯ ОПТИЧЕСКОГО СИГНАЛА.
  • 19.1.ТЕОРЕМА ВЫБОРКИ КОТЕЛЬНИКОВА-ШЕНОНА
  • 19.2ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ
  • 17.РАДИОЛОКАЦИОННЫЕ СТАНЦИИ С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕНЫ (РСА)

    Радиолокаторы с длинной вдольфюзеляжной антенной позволяют получать детальные радиолокационные изображения только на относительно небольших дальностях. При выносе полосы разведки на десятки километров от самолета необходимо использовать антенны длиной в десятки и сотни метров, размещение которых на самолете невозможно.

    Для преодоления этого затруднения используется метод синтезирования апертуры антенны, заключающийся в запоминании отраженных от целей сигналов на участке траектории полета, длина которого равна требуемой длине антенны. Последующая обработка зарегистрированных сигналов в бортовой или наземной аппаратуре позволяет получить радиолокационное изображение с высокой детальностью.

    В настоящее время наибольшее распространение получили оптические системы обработки. В их основе лежит голографический метод, при котором записанные на пленку радиолокационные сигналы (радиоголограммы) используются для формирования радиолокационного изображения.

    В РСА принцип голографии используется как при регистрации отраженных радиоволн, так и в оптических устройствах ООС.

    Опорная волна, проходя через голограмму, создает изображение объекта точно в том месте, где он находился в момент записи голограммы. Изображение

    (точки) не будет точечным, а несколько размытым. Размер пятна δ x, определяющий детальность создаваемого изображения, можно найти из выражения, имеющего следующий вид:

    δ x = λ R/X;

    где λ - длина облучающей волны; R - Расстояние от голограммы до объекта; X - линейный размер голограммы.

    Сформулируем основные особенности голографического процесса:

    - необходимо наличие когерентных опорной и сигнальной волн;

    - в процессе голографирования происходит перекодирование амплитуднофазового распределения поля сигнальной волны в амплитудное распределение сигнала и регистрация этого сигнала в виде голограммы (интерференционной картины);

    - для восстановления изображения необходимо облучить голограмму опорной волной.

    Глограммы обладают рядом интересных свойств. Одно из них состоит в возможности изменения масштаба изображения.Если одновременно изменить в одно и то же число раз линейный размер голограммы и длину волны восстанавливающего изображение пучка света, то в соответствующее число раз

    изменится и масштаб создаваемого изображения. Если изменения длины волны и масштаба голограммы непропорциональны, то изображение также будет сформировано, однако в нем возникнут масштабные искажения. Во многих практических применениях эти искажения не играют существенной роли.

    Это свойство позволяет записывать голограммы на одной длине волны, например в радиодиапазоне, а восстанавливать волновой фронт и наблюдать изображение на другой волне, в оптическом диапазоне.

    Рассмотрим радиолокационную систему бокового обзора, установленную на борту самолета, как показано на рис.17.1. Предположим, что последовательность импульсных радиолокационных сигналов направлена на местность от радарной системыы на самолете и что отраженные сигналы, зависящие от отражательной способности местности, принимаются с площадки, близлежащей к курсу самолета. Назовем координату радиолокационного изображения, поперечную направлению полета, "дальностью", а совпадающую с трассой полета -"азимутом". Удобно также назвать координату, соединяющую траекторию радиолокатора на самолете с любой рассматриваемой целью, "наклонной дальностью". Если используется радиолокационная система обычного типа, то разрешение по азимуту будет иметь величину порядка λ r1 /D, где λ - длина волны радиолокационных сигналов, r1 - наклонная дальность, D - размер апертуры антены вдоль трассы полета. Однако длина волны радиолокационного сигнала на несколько порядков больше оптической волны и, следовательно, для того, чтобы получить угловое разрешение, сравнимое с разрешением системы фоторазведки, требуется очень большая величина апертуры антены D. Требуемая длина антены может составлять десятки и даже сотни метров. Очевидно, что на самолете это трудно реализовать.

    Однако это затруднение можно преодолеть, применяя метод синтезированной апертуры. Основной принцип синтезирования апертуры состоит в том,что различные элементы решетки не обязательно должны существовать одновременно в пространстве. Предположим, что на самолете установлена маленькая антена бокового обзора и что относительно широкий луч радара сканирует местность за счет движения самолета. Положения самолета, в которых излучаются радиолокационные импульсы, можно рассматривать как элементы линейной антенной решетки. Тогда принимаемый сигнал в каждом из этих положений регистрируется когерентно как функция времени, поскольку на радиолокационный приемник подается опорный сигнал, позволяющий одновременно регистрировать и амплитудную, и фазовую информацию. Затем различные записанные комплексные волны соответствующим образом обрабатываются для синтеза действительной апертуры.

    Чтобы изучить более подробно, как реализуется этот метод синтезирования антены, рассмотрим сначала задачу с точечной целью и затем распространим полученные результаты методом суперпозиции на более сложный случай. Предположим, что точечная цель находится в точке x1 .

    Радиолокационный импульс формируется путем периодической прямоугольной модуляции синусоидального сигнала с угловой частотой равной ω .

    Азимут Область обзора

    где A1 - соответствующая комплексная постоянная. Комплексная величина A1 включает такие факторы, как излучаемая мощность, отражательная способность цели, фазовый сдвиг и закон распространения (обратно пропорционально четвертой степени мощности). Воспользовавшись параксиальным приближением, дальность r можно записать так:

    где k = 2π /λ . Выражение (17.3) зависит от t и x, причем пространственные и временные переменные связаны между собой соотношением

    где v - скорость самолета. Если теперь предположим, что местность на расстоянии r1 состоит из набора n точечных целей, то, воспользовавшись методом суперпозиции, запишем полный отраженный сигнал в виде

    S(t) = ∑ An (xn ,r1 )exp{i[ω t-2kr1 -k(vt-xn )2 /r1 ]}. (17.5) n=1

    Если отраженный радиолокационный сигнал, описывается (17.5),демодулируется с помощью синхронного детектора, то демодулированный сигнал можно записать так:

    S(t) = ∑ An (xn ,r1 ) cos[ω c t-2kr1 -k(vt-xn )2 /r1 +ϕ n ], (17.6) n=1

    где ω c - произвольная несущая частота, а ϕ n - произвольный фазовый угол. Для запоминания отраженного радиолокационного сигнала применяют

    электронно-лучевую трубку. Подаваемый на нее демодулированный сигнал модулирует интенсивность электронного луча, который развертывается в вертикальном направлении синхронно с отраженными радиолокационными импульсами. Если изображение сигнала с экрана трубки спроектировать на фотопленку, которая перемещается в горизонтальном направлении с постоянной скоростью, то будет зарегистрирована последовательность трасс дальности, которые сформируют двумерное изображение (рис.17.2). Вертикальные линии описывают развертку по дальности, а по горизонтали откладываются положения азимута. Таким образом, зарегистрированное изображение представляет собой набор выборок сигнала S(t). Эта выборка осуществляется таким образом, что к моменту окончания записи сигналов на пленке она оказывается существенно неразличимой от первоначального сигнала. При такой регистрации очевидно, что переменные во времени преобразуются в переменные по пространству в значениях расстояния вдоль линии записи. При правильной экспозиции прозрачность регистрирующей пленки представляет изменение отраженного радиолокационного сигнала по азимуту. Таким образом, если рассматривать только данные, зарегистрированные в направлении y = y1 , амплитудное пропускание можно представить в виде

    )2 +ϕ

    ∑ A (x

    ) cos[ω x-2kr

    r 1 v f

    Дальность (у)

    След модулированногоАзимут (х) по яркости электронного луча

    где K1 и K2 - смещение и коэффициент пропорциональности, x=vf t - координата пленки; vf - скорость перемещения пленки; ω x =ω c /vf . Поскольку косинус можно представить в виде суммы двух комплексно-сопряженных экспонент, то сумму в (7.75) можно записать в виде двух сумм T1 и T2 :

    ) exp{i[ω x-2kr

    )2 (x-x

    /v)2 +ϕ

    )=---- ∑ A

    )2 (x-x

    /v)2 +ϕ

    )=---- ∑ A

    ) exp{-i[ω x-2kr

    Для простоты ограничимся задачей для одной цели. Тогда для n = j уравнение (17.8) принимает вид

    ) = Cexp(iω x)[-i--- (----)2 (x - x

    /v)2 ],

    где C - соответствующая комплексная постоянная. Первая экспонента описывает линейную фазовую функцию, т.е. просто наклон излученной волны. Угол наклона к плоскости пленки определяется выражением

    Таким образом, за исключением линейной фазовой функции, (7.76) является суперпозицией N положительных цилиндрических линз, центрированных в точках, определяемых выражением

    x = vj xn /v,

    n = 1, 2, ..., N.

    Аналогично (17.9) содержит линейный фазовый множитель - 0 и описывает суперпозицию N отрицательных цилиндрических линз с центрами, определяемыми (17.14), и с фокусными расстояниями, описываемыми (17.13).

    Для восстановления изображения транспарант, соответствующий (17.7), освещают монохроматической плоской волной, как показано на рис.17.3. Тогда можно показать, применяя теорию Френеля-Кирхгофа или принцип Гюйгенса, что действительные изображения, создаваемые T1 (x,y1 ), и мнимые изображения, создаваемые T2 (x,y1 ), будут восстанавливаться в передней и задней фокальных плоскостях пленки. Относительные положения изображений точечных рассеивателей распределяются вдоль линии фокусов, так как многочисленные центры линзоподобной структуры пленки определяются положением точечных рассеивателей. Однако восстановленное изображение будет размазано в направлениии y; вот почему эта пленка является по существу реализацией одномерной функции вдоль y = y1 и, следовательно, в этом направлении не оказывается никакого фокусирующего действия.

    Поскольку нашей целью является восстановление изображения не только в азимутальном направлении, но и в направлении дальности, необходимо отображать координату y непосредственно на фокальной плоскости азимутального изображения. Чтобы выполнить это, необходимо напомнить, что оно прямо пропорционально дальности r1 . В свою очередь, фокусное расстояние прямо пропорционально рассматриваемой координате y. Таким образом, чтобы создать карту местности, мы должны отобразить координату y передаваемого сигнала на плоскость, положение которой определяется фокусными расстояниями азимутального направления. Это легко осуществить, установив положительную коническую линзу непосредственно за регистрирующей пленкой, как показано на рис.17.4. Очевидно, что если коэффициент пропускания конической линзы равен

    x2 /2f),

    f - линейная функция от r1 , как показано в (17.13), то можно полностью удалить всю названную плоскость всей мнимой дифракции в бесконечность, при этом оставить коэффициент пропускания в направлении y неизменным. Таким образом, если цилиндрическую линзу поместить на фокусном расстоянии от пленочного транспаранта, мнимое изображение в направлении y получится в бесконечности. Пусть азимутальное изображение и изображение в направлении дальности (т.е. в направлениях x и y) совпадают, но в бесконечно удаленной точке. Их можно перенести обратно на конечное расстояние с помощью сферической линзы. При этой операции действительное изображение координат местности по азимуту и по дальности будет сфокусировано на выходной плоскости системы. Однако на практике желаемое изображение регистрируется через щель в выходной плоскости.

    Проявленную вторичную пленку можно рассматривать и дешифрировать.

    Техническое задание

    Разработать РТС :

    Тип РТС ……………....самолётная;

    Назначение. ……………РЛС бокового обзора с синтезированной апертурой;

    Тактико-технические характеристики разрабатываемой РТС:

    1 Анализ технического задания

    В самолётных РЛС существуют жёсткие ограничения на габариты антенн, что препятствует достижению разрешающей способности по азимуту.

    Для преодоления этого препятствия используют один из двух методов, реализуемых в РЛС бокового обзора. В первом случае антенна располагается вдоль фюзеляжа, что позволяет существенно увеличить её размеры и улучшить за счёт этого разрешающую способность. При втором методе используется искусственное увеличение размеров антенны за счет, так называемого, синтезирования апертуры.

    По техническому заданию требуется разработать самолётную РЛС бокового обзора с синтезированной апертурой. В таких РЛС антенна больших размеров устанавливается неподвижно вдоль фюзеляжа самолёта. Луч антенной системы направлен перпендикулярно оси самолёта. Обычно устанавливаются две антенны, лучи которых направлены вправо и влево от направления полета. Просмотр заданного участка земной поверхности происходит благодаря перемещению самого летательного аппарата во время полёта (рисунок 1).



    Рисунок 1 – Принцип обзора пространства в направлении, перпендикулярном оси самолёта.

    Принцип работы РЛС с синтезированием апертуры (РСА) основан на создании эквивалентных апертур с увеличенной эффективной длиной, что достигается с помощью специальных методов обработки сигналов, а не увеличением физических размеров апертуры реальной антенны. В РСА используется всего один излучающий антенны элемент (реальная антенна), который последовательно занимает положение вдоль траектории полёта. В каждом из этих положений излучаются и принимаются сигналы (Рисунок 2).

    Отраженные от целей сигналы как амплитуда, так и фаза принятых сигналов.запоминаются в устройстве памяти,

    Рисунок 2 – Принцип формирования искусственного (синтезированного) раскрыва.

    После результирующего перемещения излучающего элемента на величину сигналы в запоминающем устройстве становятся весьма схожими с сигналами, которые принимались элементами реальной линейной решётки. Если сигналы в ЗУ обрабатывать по такому же алгоритму, что и при формировании реальной линейной решётки, то получим эффект приёма сигналов на антенну больших размеров (метод «синтезирования апертуры»).

    Кроме того, в РСА сигналы в ЗУ можно селектировать по дальности и при необходимости сигналы разных дальностей можно обрабатывать различным образом (фокусировка).

    При развороте самолет начинает крениться, в результате чего возникает ошибка измерения высоты. Чтобы исключить ошибку необходимо закрепить антенну на балансирующем устройстве, в результате работы которого главный лепесток диаграммы направленности антенны направляется перпендикулярно земной поверхности.

    Обычно в РТС бокового обзора используют сигнал с импульсной модуляцией.

    Антенна имеет косекансную диаграмму направленности.

    Для того чтобы не ухудшать аэродинамических свойств самолета, антенну помещают под специальный обтекатель, который не препятствуют прохождению радиосигнала. В расчетах необходимо учесть, что самолет находится над разными типами земной поверхности, которые обладают различными отражающими свойствами.

    2 Особенности построения некоторых блоков РЛС с синтезированной апертурой.

    Антенна

    Горизонтальный размер апертуры антенны РСЛ определяет линейную разрешающую способность по азимуту, практически достижимую в РЛС с синтезированием апертуры. При обработке сигналов принимается, что КНД реальной антенны при пролёте летательного аппарата остаётся постоянным. Следовательно, необходимо иметь стабилизацию ДН антенны, чтобы остаточные колебания луча были значительно меньше ширины ДН. В большинстве случаев антенна устанавливается в боковом направлении.

    Приёмопередатчик

    В РЛС с синтезированием апертуры должен обеспечивать высокую когерентность сигналов. Следовательно, предъявляются более жесткие требования к стабильности частоты генераторов и параметров элементов. Выходной сигнал когерентной РЛС представляет собой напряжение на выходе синхронного детектора. Выходной сигнал является биполярным видеосигналом, в котором уровень опорного смещения соответствует нулевому смещению сигнала.

    Запись сигналов и запоминание.

    Характерной особенностью РСА является необходимость запоминания принимаемых сигналов, так как необходимые для формирования синтезированной ДН сигналы поступают на вход не одновременно, а на протяжении определённого интервала времени. Обработка запомненных сигналов и позволяет получить высокую разрешающую способность. Один и тот же сигнал используется для формирования выходных сигналов для большого числа точек радиолокационного изображения. Требования к ёмкости устройств памяти весьма высоки. В РЛС с высокой разрешающей способностью требуется большой объём памяти, поэтому в них обычно используют фотографическое запоминающее устройство.

    Синтезирование апертуры (СА) - метод обработки сигналов, позволяющий существенно повысить поперечную линейную разрешающую способность радиолокатора относительно направления ДНА и улучшить детальность радиолокационного изображение местности. Используется СА для получения радиолокационной карты (при картографировании), разведке ледовой обстановки и в других ситуациях. По качеству и детальности такие карты сравнимы с аэрофотоснимками, но в отличие от последних могут быть получены в отсутствие оптической видимости земной поверхности (при полете над облаками и ночью).

    14.1. Принцип действия и устройство РЛС с СА

    Детальность радиолокационного изображения зависит от линейной разрешающей способности радиолокатора. При использовании полярных координат разрешающая способность по дальности (радиальная разрешающая способность) определяется параметрами зондирующего сигнала, а в поперечном направлении (тангенциальная разрешающая способность) шириной ДНА радиолокатора и расстоянием до цели (рис. 14.1). Детальность радиолокационного изображения местности тем выше, чем меньше т.е. она зависит от величины (площади) элемента разрешения.

    Рис. 14.1. Параметры, характеризующие детальность радиолокационного изображения

    Поскольку задача уменьшения решается использованием зондирующих сигналов с малой длительностью импульсов или переходом к сложным сигналам (частотно-модулированным или фазо-манипулированным). Уменьшения требует использования узких ДНА, так как пропорциональна ширине ДНА, а (к - длина волны; длина антенны), которая не может быть больше продольного размера (длины) летательного аппарата. Основной путь повышения тангенциальной разрешающей способности - применение в радиолокаторах метода синтезирования

    апертуры антенны при движении ЛА. Чаще всего РЛС с СА используют в так называемых радиолокаторах бокового обзора (рис. 14.2).

    В радиолокаторах, у которых антенна размещена вдоль фюзеляжа, и она тем выше, чем больше продольный размер фюзеляжа ЛА. Поскольку конструктивно ограничивает размер внутренней антенны то и детальность изображения в радиолокаторах с вдоль фюзеляжными антеннами улучшается, хотя зависимость от дальности сохраняется.

    Более радикальный путь приводит к радиолокаторам с синтезированием апертуры (РСА) при поступательном движении ЛА.

    Рис. 14.2. Диаграммы направленности радиолокатора бокового обзора

    Принцип синтезирования апертуры. Пусть линейная ФАР размером (апертурой) (рис. 14.3,а) состоит из излучателей. Суммируя принятые облучателями сигналы, можно в каждый момент времени получать диаграмму ФАР с шириной Если для обеспечения заданной требуется можно синтезировать ФАР, последовательно перемещая один излучатель (антенну) вдоль этой апертуры с некоторой скоростью V, принимая отраженные от цели сигналы, запоминая их, а затем совместно обрабатывая (рис. 14.3,б). При этом синтезируется апертура линейной антенны с эффективным размером и

    ДНА шириной однако увеличиваются затраты времени на синтезирование и усложняется аппаратура радиолокатора.

    Пусть ЛА движется на некоторой высоте с постоянной скоростью V прямолинейно и параллельно земной поверхности (рис. 14.4).

    Рис. (4.3. Фазированная антенная решетка (а) и схема синтезирования апертуры при перемещении излучателя (б)

    Антенна, имеющая ДНА шириной и повернутая на 90° к линии пути, последовательно проходит ряд положений в которых принимает сигналы, отраженные от цели, находящейся в точке на земной поверхности. При различных положениях антенны (различных ) сигналы от одной и той же точки проходят разные расстояния что приводит к изменению фазовых сдвигов этих сигналов, вызываемых разностью хода Поскольку сигнал проходит дважды (в направлении цели и от нее), два сигнала, принятые при соседних положениях антенны, отличаются по фазе на

    В зависимости от того, компенсируются или нет при обработке принятых сигналов фазовые набеги (образующиеся на отрезках различают фокусированные и нефокусированные РСА. В первом случае обработка сводится к перемещению антенн, запоминанию сигналов, компенсации фазовых набегов и суммированию сигналов (см. рис. а во втором - к тем же операциям, но без компенсации фазовых набегов.

    Рис. 14.4. Появление фазовых сдвигов в процессе прямолинейного движения ЛА при синтезировании апертуры

    Тангенциальная разрешающая способность РСА. Нефокусированная обработка обеспечивает сложение сигналов V, при разности фаз сигналов с крайних и центрального элементов апертуры Если положить то максимальное значение составит Из рис. 14.4 следует поэтому, если то

    Таким образом, при суммировании сигналов на участке траектории, равном ширина синтезированной ДНА составит

    При этом тангенциальная разрешающая способность а при произвольном расстоянии до цели (рис. 14.5).

    Рис. 14.5. Зависимость тангенциальной разрешающей способности от дальности в обычном радиолокаторе (1), в пефокусированном РЛ с СА (2) и в фокусированном РЛ с СА (3)

    При фокусированной обработке сигналы суммируются на участке смешения реальной установленной на ЛА антенны, на котором облучается находящаяся в точке цель:

    В этом случае ширина синтезированной ДНА

    а тангенциальная разрешающая способность

    Структурная схема РСА. Основу РСА составляют когерентно-импульсные радиолокаторы, построенные по схеме с внутренней когерентностью (рис. 14.6).

    Когерентный генератор (КГ) на частоте служит для формирования в однополосном модуляторе зондирующего сигнала с частотой Источником колебаний с частотой является генератор радиочастоты (ГРЧ). Зондирующий сигнал модулируется импульсной последовательностью с модулятора Усилитель мощности (УМ) представляет собой оконечный каскад передатчика. Обработка сигналов (запоминание, компенсация фаз, суммирование) обычно выполняется комплексными цифровыми фильтрами на низкой частоте, поэтому в схеме предусматривают квадратурные каналы, каждый из которых начинается с соответствующего фазового детектора. Источником опорного напряжения для фазовых детекторов служит когерентный гетеродин (КГ). Сигналы квадратурных каналов (сохраняющих информацию о фазе) подаются либо на устройство записи либо на устройство цифровой обработки в реальном масштабе времени (УОС). При аналоговой обработке сигналов в РЛС с СА информация с выходов квадратурных фазовых детекторов подается в специальное устройство для записи, например, в оптическое устройство записи на фотопленку изображения с экрана электроннолучевой трубки, модулированного по яркости

    Рис. 14.6. Структурная схема радиолокатора с синтезированием апертуры

    свечения пятна. Обработка и воспроизведение информации происходят позднее, после обработки пленки с запаздыванием во времени (не в реальном масштабе времени).

    При цифровой обработке сигналов результирующая информация получается сразу в процессе обработки в реальном масштабе времени.

    Принципы обработки сигналов в РСА. При любом виде обработки необходимо запоминание кадра информации о сигналах целей.

    Размеры кадра задаются по азимуту эффективным значением синтезируемой апертуры и по дальности (рис. 14.7,а).

    Поскольку принимаемые при каждом положении антенны сигналы поступают на вход приемника с просматриваемой дистанции последовательно во времени, записываются они также последовательно в каждый из азимутальных каналов, что условно показано стрелками на рис. 14.7, б. При этом формируется соответствующий участку местности кадр изображения с размерами Получить информацию об угловом положении цели, т.е. о координате х, при синтезировании апертуры можно только при анализе отраженных от этой цели сигналов, записанных на интервале синтезирования Поэтому информация с устройства записи считывается последовательно в каждом из каналов дальности (рис. 14.7,в).

    Рис. 14.7. Запоминаемый кадр местности (а): диаграммы записи (б) и считывания (в) ситапов

    Сигнал, обрабатываемый в РСА. Пусть радиолокатор работает в импульсном режиме. Тогда за период повторения антенна смещается на отрезок

    Для исключения пропуска цели при таком смещении антенны потребуем чтобы на рис. 14.8. При этом формируется соответствующий участку местности кадр изображения с размерами и Получить информацию об угловом положении цели, т.е. о координате х, при синтезировании апертуры можно только при анализе отраженных от этой цели сигналов, записанных на интервале синтезирования Поэтому информация с устройства записи считывается последовательно в каждом из каналов дальности (см. рис. 14.7,а). Допустим теперь, что неподвижен, а цель

    Рис. 14.8. Кинематика взаимного смешения и точечной цели

    движется относительно него с той же скоростью V (рис. 14.9,а). Начиная отсчет времени с момента прохода целью (точка М) середины апертуры и считая имеем

    При проходе цели через диаграмму направленности доплеровский сдвиг частоты (рис. и фаза (рис. 14.9,в) меняются по законам:

    Отметим, что коэффициенты при постоянных в полете "к и V зависят от следовательно, обработка сигналов многоканальна по дальности.

    Комплексную амплитуду отраженных сигналов при синтезировании апертуры можно представить в виде

    Рис. 14.9. Схема формирования вектора радиальной скорости (а); характер изменения доплеровской частоты (б) и фазы (в) сигнала при пролете цели

    В импульсном радиолокаторе сигнал приходит в дискретные моменты времени, поэтому Тогда

    Дискретные составляющие сигнала (14.4) необходимо запомнить на интервале времени , где

    Алгоритмы обработки сигнала в РСА. Для оптимальной обработки сигнала (14.4) необходим фильтр с импульсной переходной характеристикой

    Методы обратного (инверсного) синтезирования апертуры

    При использовании единой антенны на передачу

    Обеспечивается такое же

    разрешение, как и при синтезировании апертуры за счет движения приемопередающей антенны РЛС:

    , что обеспечивает угловое разрешение

    Методы синтезирования, основанные на использовании перемещения и (или) вращения цели, получили название обратное (инверсное) синтезирование. Характерными примерами использования обратного синтезирования являются:

    получение радиолокационных портретов морских целей (кораблей) за счет использования их качки и рыскания по курсу;

    распознавания групповых воздушных целей;

    оценка ЭПР элементов цели, разрешаемых за счет их вращения на стенде и др.

    Рассмотрим траекторный сигнал РЛС при обратном синтезировании апертуры. Фаза и задержка траекторного сигнала как основные источники информации о цели определяются изменением расстояния до элементов цели в процессе синтезирования апертуры. В общем случае расстояние изменяется вследствие перемещения цели относительно РЛС и вращения цели. При этом цель может одновременно вращаться в различных плоскостях с различной угловой скоростью.

    Радиальная скорость цели в направлении РЛС.

    А доплеровская частота

    , без учета начальной фазы

    Образуется вследствие радиального перемещения одновременно всех элементов цели относительно РЛС. Обычно производится оценка и компенсация этой частоты в сигнале.

    Образуется в результате линейной

    относительно центра вращения цели. Разрешение элементов цели по частотной модуляции траекторных сигналов при малом размере синтезирования апертуры невелико. Поэтому разрешение по дальности обеспечивается модуляцией зондирующего сигнала. При этом в алгоритме обработки траекторного сигнала необходимо учитывать изменение как частоты сигнала, так и его задержки

    будут связаны следующим условием

    (8.59)

    А координата

    Для методов обратного синтезирования применительно к РЛС землеобзора характерны следующие основные особенности:

    цель движется как единый объект, т.е. отдельные элементы цели перемещаются по взаимосвязанным траекториям;

    при наблюдении одиночных объектов, например кораблей, размер зоны обзора определяется размером объекта;

    разрешение по угловой координате определяется углом поворота цели относительно направления на РЛС за время синтезирования;

    угловой размер апертуры обычно не превышает десятка градусов, так как при этом уже достигается разрешение порядка нескольких длин волн;

    разрешение по дальности обеспечивается, как и при прямом синтезировании, за счет модуляции зондирующего сигнала;

    параметры траекторного сигнала определяются параметрами движения цели (векторами линейной и угловой скоростей), которые в большинстве случаев неизвестны наблюдателю. Это требует адаптивной к параметрам движения цели обработки траекторного сигнала и большого объема априорных сведений о цели.

    Полоса доплеровских частот траекторного сигнала и, следовательно, требуемая частота повторения зондирующих импульсов определяются размером цели (зоны обзора) по азимуту:

    Образованный одновременным перемещением цели в различных плоскостях, не перпендикулярен направлению наблюдения. Тогда вектор скорости

    Масштаб изображения цели по азимуту, как и ранее, определяется угловой скоростью вращения цели

    (8.61)

    Применение метода обратного синтезирования в РЛС землеобзора. В РЛС землеобзора этот метод используется для получения изображений морских целей (кораблей). Он дает возможность получения высокого разрешения в передней зоне обзора РСА, так как необходимый угловой размер синтезированной апертуры обеспечивается за счет собственного движения (перемещения и вращения) корабля. Кроме того, обратное синтезирование апертуры позволяет получить высокое разрешение не только в плоскости дальность - азимут, но и в плоскости дальность - угол места. Применительно к наблюдению кораблей это позволяет получить изображение вертикального контура надстроек кораблей, что особенно важно при решении задачи распознавания морских целей.

    Одновременно с перемещением по курсу при волнении моря корабль испытывает также колебания корпуса вокруг центра масс. Для задач обратного синтезирования обычно используют рыскание по курсу, килевую и бортовую качку корабля. Рыскание по курсу (рис. 8.23,а) соответствуют вращению корабля относительно вертикальной оси. Килевая качка (попеременный дифферент на нос и на корму) соответствует вращению корабля относительно поперечной горизонтальной оси (рис. 8.23,6). Попеременный крен (бортовая качка) на левый и правый борт соответствует вращению корабля относительно продольной горизонтальной оси (рис. 8.23,в). На рис. 8.23 все оси вращения перпендикулярны плоскости рисунка.

    Вращение корабля (качка, рыскание) носят периодический характер, т.е. угол отклонения корабля от равновесного (нормального) положения изменяется в соответствии с гармоническим законом:

    Период колебаний. Угловая скорость вращения изменяется по гармоническому закону:

    Максимальное значение скорости

    достигается в момент прохождения равновесного (как при отсутствии волнения моря) положения корабля.

    Определяется многими факторами: высотой волн, направлением бега волн относительно курса корабля, скоростью движения и конструкцией корабля. Большой корабль как колебательная система эквивалентен узкополосному фильтру, и параметры его колебаний (амплитуду и период) можно считать постоянными за время синтезирования порядка долей секунд, С уменьшением водоизмещения корабля (менее 1000 т) амплитуда и период отклонения уже зависят от характеристик волнения моря и носят случайный характер. Обычно считают, что угол р является узкополосным нормальным процессом.

    В табл. 8.3 даны оценочные значения характеристик колебаний кораблей различного типа при волнении моря 5-6 баллов.

    Если линия визирования корабля перпендикулярна оси угловых колебаний (вращения), возможно получение изображения корабля в различных плоскостях. Килевая качка обеспечивает получение изображения вдоль корабля и его надстроек, качка по крену - изображение в боковом направлении корабля и надстроек, рыскание по курсу - изображение корабля в горизонтальной плоскости. Движение корабля с постоянными скоростью и курсом эквивалентно движению РЛС при неподвижном корабле и обеспечивает изображение в горизонтальной плоскости. В реальной ситуации одновременно существуют все виды колебаний корабля, что затрудняет определение положения плоскости изображения относительно корабля. В то же время, наблюдая динамическое изображение корабля, т.е. изображение, изменяющееся в зависимости от фазы колебаний корабля во время синтезирования, можно эффективно распознавать его класс.

    Расстояния

    от надстройки на высоте Ь до РЛС (рис. 8.24) определяется выражением

    где Ь - высота элемента надстройки, отсчитываемая от оси вращения корабля.

    (в радианах), изменение расстояние до РЛС и, следовательно, фазы отраженного сигнала можно представить в виде

    Через ноль, когда угловая скорость отклонения максимальна (см. 8.64):

    Изменяется незначительно и каждому элементу надстройки по высоте соответствует своя доплеровская частота

    за время синтезирования

    получим разрешение по высоте надстройки корабля

    Алгоритм обработки сигналов сводится к доплеровской фильтрации в каждом элементе разрешения по наклонной дальности. Полученные зависимости справедливы и при килевой качке корабля и радиолокационном наблюдении в передней зоне обзора РЛС на встречных курсах самолета - носителя РСА и корабля (рис. 8.25). Разрешение по доплеровской частоте в этом случае соответствует разрешению по высоте надстройки Ь, а разрешение по задержке зондирующего импульса соответствует разрешению вдоль корабля.

    При увеличении времени синтезирования начинают сказываться изменения доплеровской частоты и задержки сигнала, что необходимо учитывать в алгоритме обработки. Предельное разрешение без учета изменений задержки и частоты ограничено величиной (8.59)

    При постоянном времени синтезирования разрешение будет ухудшаться.

    можно получить, измеряя характеристики сигнала в каждом доплеровском канале на выходе моноимпульсной антенны.

    Упрощенная структурная схема РСА при обратном синтезировании по морским целям представлена на рис. 8.26. Антенная система формирует три пространственных канала приема: суммарный и два разностных (в горизонтальной и вертикальной плоскостях). После преобразования на промежуточной частоте принимаемые сигналы с помощью фазовых детекторов и АЦП превращаются в цифровые сигналы. Система слежения по частоте определяет среднюю доплеровскую частоту принимаемых сигналов и ее изменение для компенсации в процессе обработки сигналов (автофокусировка), а также измеряет изменение задержки огибающей сигналов для ее компенсации при синтезировании апертуры. Система измерения вектора угловой скорости вращения (колебания) корабля обеспечивает определение масштаба и ориентации в пространстве изображения корабля.

    Перемещение цели, так же как и движение носителя РЛС, создает эффект синтезирования апертуры, угловой размер которой определяется взаимным угловым перемещением РЛС и цели. Покажем это на примере разрешения элементов групповой цели (рис, 8.27), состоящей из двух синхронно движущихся малоразмерных объектов (точечных целей).

    Доплеровская частота изменяется так, что разница частот сигналов двух целей, движущихся с одинаковой скоростью, составляет

    Соответственно тангенциальные составляющие скорости РЛС и целей.

    - угловая скорость вращения линии визирования

    РЛС - цель.

    Алгоритм обработки траекторного сигнала при наблюдении груп новой цели определяется фазовой структурой сигнала, которая в свою очередь зависит от взаимного перемещения (траекторий) РЛС и целей.

    При прямолинейных траекториях и постоянных скоростях движения относительное расстояние РЛС - цель (см. рис. 8.27)

    Фазовая функция траекторного сигнала (без учета несущественной начальной фазы)

    Соответственно доплеровская частота траекторного сигнала

    Для цели, смещенной на угол А 6 , доплеровская частота траекторного сигнала

    В общем случае неизвестны, требуется

    адаптивная к этим параметрам система обработки, например с помощью автофокусировки.

    При энергичном маневре самолетов

    см время синтезирования может изменяться от 0,5 до 0,05 с. При адаптивной обработке, например автофокусировке, это время может быть значительно увеличено.

    Синтезирование апертуры антенны является одним из наиболее перспективных направлений развития радиолокации, появившееся в конце 50-х годов и сразу привлекшее к себе широкое внимание. Основным преимуществом этого направления является многократное (в 1000 и более раз) увеличение угловой разрешающей способности РЛС. При этом обеспечивается возможность радиовидения объектов радиолокации и обнаружения малоразмерных объектов, повышение точности целеуказания и помехозащищенности РЛС. На первом этапе развития этого направления основные успехи были достигнуты в значительном повышении эффективности воздушной и космической разведки. В дальнейшем методы синтезирования апертуры начали использоваться в разведывательно-ударных комплексах, многофункциональных РЛС самолетов для обнаружения малоразмерных и групповых целей и наведения на них управляемого оружия, в РЛС планового обзора, системах радиотехнической разведки и навигации.

    В развитии теории и практики от радиолокации к радиовидению было два этапа.

    На первом этапе благодаря использованию широкополосных (100 МГц и более) зондирующих сигналов удалось обеспечить высокое разрешение по задержке сигналов и как следствие высокое разрешение по дальности (единицы метров и лучше). Разрешение по дальности определяется выражением

    Ширина спектра зондирующего сигнала.

    - длина волны РЛС; с 1 - размер антенны,

    Формирование ДН реальной антенны. Для пояснения принципа синтезирования апертуры вначале рассмотрим формирование диаграммы направленности реальной антенны, которая и определяет разрешающую способность по угловой координате обычной РЛС.

    Пусть имеется линейная апертура антенны размером d, на которую падает плоская электромагнитная волна под углом 0 (рис. 2.1), т.е. антенна работает на прием.

    Под апертурой (раскрывом) понимается та часть антенны, которая участвует в излучении или приеме электромагнитной волны. Фронт волны - это поверхность равных фаз. В рассматриваемом случае это плоскость. Фаза электромагнитной волны вдоль апертуры (ось X) определяется запаздыванием фронта волны относительно центра апертуры:

    где г(х) - расстояние от фронта волны до точки х на апертуре.

    Диаграмма направленности формируется в результате синфазного суммирования электромагнитной волны, падающей на апертуру:

    Напряженность электромагнитной волны.

    Нормированная диаграмма направленности в этом случае равна

    на уровне 0,7 или, что то же, 0,5 по мощности:

    При работе одной антенны не только на прием, но и на передачу ДН определяется как

    а эквивалентная ширина ДН на передачу и прием

    В более общем случае апертура антенны задает объем анализируемого пространственно-временного сигнала, который представляет собой зависимость напряженности, фазы и поляризации электромагнитного поля от пространственных координат и времени. Таким образом, апертура характеризуется геометрическими размерами анализируемого объема электромагнитной волны, временем анализа, поляризационными и частотными параметрами. В этом случае разрешающая способность по угловой координате определяется изменением пространственно-временного сигнала в апертуре антенны в зависимости от углового положения источника электромагнитной волны.

    Известными примерами такого пространственно-временного сигнала могут служить объемные голографические линзы и синтезированные апертуры.

    Синтезирование апертуры. Основное отличие синтезированных (искусственных) апертур от обычных (реальных) апертур антенны состоит в том, что синтезированная апертура (СА) формируется последовательно во времени. В каждый данный момент прием электромагнитной волны ведется реальной апертурой, а синтезированная апертура является результатом последовательного во времени приема электромагнитной волны реальной апертурой при различном ее положении относительно источника электромагнитной волны. Рассмотрим процесс синтезирования на примере формирования прямолинейной апертуры РСА (рис. 2.2).

    Ее диаграмма направленности на прием определяется так же, как и ДН реальной апертуры. Набег фазы волны между двумя положениями реальной антенны на траектории

    в два раза больше, чем у обычной апертуры, что обусловлено двойным проходом электромагнитной волной расстояния г (при передаче и при приеме). В результате ширина диаграммы направленности у синтезированной апертуры РСА такого типа оказывается меньше, чем у реальной апертуры такого же размера:

    Главный результат синтезирования апертуры в том, что размер апертуры увеличился в N раз по сравнению с размером реальной апертуры.

    синтезированной апертуры, сформированной в результате

    перемещения реальной антенны. В данном случае эффект достигается увеличением объема анализируемого поля в пространстве и времени.

    Основные свойства синтезированной апертуры. Рассмотрим основные свойства синтезированной апертуры.

    для бортовых самолетных и космических систем. Типовые значения относительных размеров апертур различных систем следующие:

    Благодаря большому размеру апертуры РСА возможно получение высокого линейного разрешения по угловой координате на больших дальностях:

    Синтезированная апертура формируется в результате приема и обработки отраженных от цели сигналов, т.е. синтезированная апертура определяет ДН только на прием. ДН на передачу при синтезировании апертуры определяется ДН реальной антенны. Поляризационные и частотные свойства СА также определяются реальной антенной.

    При синтезировании апертуры одновременно может работать (излучать, принимать) всего один антенный элемент (реальная антенна). В этом случае не возникает электродинамических задач при формировании всей апертуры, так как нет взаимодействия элементов по электромагнитному полю. Задача синтезирования апертуры и формирования диаграммы направленности фактически сводится к разработке алгоритмов и их выполнению процессором обработки траекторного сигнала. Как и для реальной антенны, ДН синтезированной апертуры есть зависимость сигнала на выходе процессора от угловой координаты точечного источника излучения или переизлучения (в случае активной РСА).

    ДН может быть однолучевой, многолучевой, моноимпульсной, адаптивной и т.п.

    объекты наблюдения РСА в большинстве случаев находятся в промежуточной зоне (зоне Френеля) апертуры, а не в дальней зоне, как у большинства реальных антенн. При приеме в дальней зоне фронт волны на апертуре считается плоским. С увеличением размера апертуры (или уменьшением расстояния до объекта) сферичностью фронта волны уже пренебрегать нельзя. Обычно условие дальней зоны записывается как

    Для реальной антенны бортовой РЛС граница дальней зоны порядка 100 м, а при синтезировании она исчисляется тысячами километров. Поэтому в РСА при обработке траекторного сигнала необходимо учитывать сферичность фазового фронта электромагнитной волны. В простейших РСА, когда размер СА небольшой, кривизну фронта электромагнитной волны не учитывают. Такой режим называют доплеровским обужением луча (ДОЛ), и увеличение разрешения при этом невелико (10...30) раз.

    Учет сферичности фронта волны при обработке траекторного сигнала называют фокусировкой, а апертуру соответственно фокусированной апертурой. На рис. 2.3 показано распределение поля нефокусированной (ДОЛ) (а) и фокусированной (б) апертур в промежуточной и дальней зонах ДН.

    На расстоянии фокусирования, т.е. такое же, как и у обычной антенны в дальней зоне. Можно сказать, что процесс фокусирования переносит свойства направленности апертуры из дальней зоны в промежуточную.

    Так как сферичность фронта волны зависит от расстояния до объекта, необходим различный закон фокусирования для разных дальностей, т.е. для обеспечения фокусировки СА нужен многоканальный по дальности алгоритм обработки траекторного сигнала.

    Благодаря фокусировке СА обеспечивает в промежуточной зоне разрешение не только по углу, но и по дальности даже при смодулированном сигнале. Однако обычно оно невелико, и разрешение по дальности обеспечивается за счет модуляции зондирующего сигнала.

    Основными источниками ошибок - некогерентности траекторного сигнала - являются фазовые нестабильности приемопередающих модулей, траекторные нестабильности носителя РСА и нестабильности среды распространения электромагнитной волны. Так, допустимая ошибка в знании траектории перемещения антенны равна нескольким миллиметрам (в сантиметровом диапазоне электромагнитной волны). Это требует специальных мер компенсации этих ошибок с помощью систем микронавигации и алгоритмов автофокусировки.

    Энергетические характеристики СА (отношение сигнал/внутрен ний шум) определяются коэффициентом усиления реальной антенны и временем синтезирования, т.е. временем когерентного накопления сиг налов. Помехозащищенность от внешних активных и пассивных помех определяется как ДН реальной антенны, так и направленными свойствами СА, т.е. пространственной селекцией помех.

    Действительно, в каждом положении антенны при синтезировании апертуры мощность принятого сигнала определяется мощностью излучения и коэффициентом усиления антенны, а синфазное сложение этих сигналов при синтезировании эквивалентно накоплению энергии сигнала за время синтезирования при постоянной спектральной мощности внутренних шумов. По отношению к источникам внешних помех, кроме того, возможна угловая селекция, эффективность которой зависит от ДН реальной и синтезированной апертур.

    Относительное перемещение антенны и объекта, необходимое для формирования СА, можно выполнить различными методами. Фор мирование СА в результате движения антенны при неподвижном объек те называют прямым синтезированием, а формирование СА при движе нии объекта и неподвижной антенне - обратным синтезированием. При этом возможно формирование СА в результате вращения объекта, что эквивалентно движению антенны вокруг объекта.

    Использование в процессе синтезирования одновременно не одной, а многих антенн позволяет синтезировать не только линейные, но и плоские и объемные СА.

    что представляет исключительно сложную задачу для бортовых ЦВМ. В наземных условиях эту задачу успешно решает оптический процессор, в котором используется запись траекторного сигнала на фотопленку и аналоговая обработка сигнала с помощью когерентной оптической системы.

    Синтезирование апертуры требует определенного времени, что приводит к задержке информации в РСА. Минимальное запаздывание информации определяется временем синтезирования, т.е. временем формирования СА. Обычно оно составляет десятые доли - единицы секунд. Максимальная задержка определяется с учетом времени выполнения алгоритма синтезирования соответствующим процессором обработки тра-екторных сигналов. Наибольшую задержку имеют наземные оптические процессоры. Она состоит из времени полета самолета в зоне работы РСА, времени возвращения на базу, времени доставки фотопленки с записью траекторных сигналов в лабораторию, времени фотохимической обработки пленки, оптической обработки и записи изображения на вторичную фотопленку и, наконец, фотохимической обработки вторичной пленки. Это время может достигать нескольких часов.